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Abstract 
Using a mixture of advanced data analytics derived from the explosion of information from 
quant credit markets and machine learning techniques, this paper develops a systematic 
framework to predict ratings migration in corporate credit. By systematically identifying 
firms with elevated possibility of downgrade or upgrade, the model supports more 
proactive portfolio management and better capital allocation. These insights are especially 
critical for financial institution investors like insurers, who are highly sensitive to credit 
ratings of securities on balance sheet. The ability to forecast rating transitions consistently 
and accurately will enhance insurer risk management and bottom-up credit selection, 
thereby ensuring a more stable and robust financial intermediation process. 
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Introduction 
 

The rapid evolution of quantitative credit promises to revolutionize the asset class in the 
same way that quant equity changed the shape of equity investment. With the advent of 
widespread electronic trading has come a corresponding explosion in the availability of 
associated data. This has led to a rich and fascinating new source of material to feed 
research projects. We wanted to see whether there was information within this new 
universe of data that might help us to predict ratings migration with greater accuracy. 

Credit ratings play a foundational role in global capital markets. They provide standardized 
assessments of creditworthiness underpinning investment decisions, regulatory 
frameworks, and capital allocation. Early prediction of rating transitions could be of benefit 
to a variety of institutional stakeholders. Active credit managers could generate signals in 
an early-warning or early-opportunity system for credit rating changes. Insurers, as 
significant investors in credit-sensitive assets, are heavily exposed to the risk of 
downgrades from a regulatory capital point of view. By anticipating credit deterioration, 
predictive models can enhance internal ratings in risk-based regulatory capital regimes 
such as Solvency UK/II.  

This paper develops a systematic framework for predicting ratings changes using a 
combination of fundamental and market-based signals. Credit rating transition modeling is 
a challenging research problem due to the relatively limited historical data, non-linear 
relationships, and multiple key drivers across the time-series and cross-section. To 
address this, we combine a diverse array of data sources with statistical and machine-
learning techniques. 

Our work contributes to the existing literature in several ways. First, we model a novel 
panel of bond-specific and equity-specific features leveraging high-quality measures from 
industry data providers. Secondly, we contribute to the growing literature on machine 
learning applied to ratings transition modeling, highlighting substantial and intuitive non-
linearities emerging from our model. Finally, we demonstrate a substantial empirical 
improvement over existing approaches – our model produces AUCs as high as 90% out-of-
sample, significantly outperforming existing benchmarks in prior literature.    
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Literature Review 
 

The existing literature can broadly be divided into two strands depending on the approach 
to credit rating forecasting taken. The first approach involves modeling the 
contemporaneous credit rating of an issuer as a function of covariates - the independent 
variables or predictors used in the model, typically with the aim of predicting credit ratings 
in a hold-out sample.  

So-called ‘static’ credit rating modeling starts from Kaplan and Urwitz (1979), who 
deployed multiple regression models to explain bond ratings using financial ratios. Early 
work compared various classification techniques: for instance, Ederington (1985) 
evaluated linear discriminant analysis, logistic regression, and probit models (which are 
similar to logistic regression but assume the probabilities follow a cumulative normal 
distribution rather than a logistic distribution), finding that logistic and probit approaches 
outperformed linear models in predicting ratings. It is worth noting that static credit rating 
models can still be considered forecasting, because contemporaneous predictions can be 
viewed as an empirical view of what the ‘true’ credit rating is of an issuer. Discrepancies 
between actual credit ratings and model ratings could be expected to converge if the 
model is accurate.  

By the 1990s and early 2000s, ordered categorical models (such as ordered probit) 
became standard for capturing the ordinal nature of ratings. Studies like Blume, Lim, and 
MacKinlay (1998) and Amato and Furfine (2004) employed these methods and confirmed 
that key financial measures such as firm size and leverage were also predictive. 
Researchers have expanded rating models since by incorporating additional factors 
beyond financial ratios. Ashbaugh-Skaife, Collins, and LaFond (2006), for example, show 
that firms with stronger corporate governance practices receive higher credit ratings, 
highlighting the importance of qualitative factors. In parallel, more advanced techniques 
from machine learning have been applied to rating prediction: Dutta and Shekhar (1988) 
demonstrated an early use of neural networks to predict bond ratings, and Huang et al. 
(2004) introduced support vector machines. More recently, Tavakoli et al. (2025) deployed 
ML on unstructured or multimodal datasets, employing various combinations of fusion 
strategies with selected deep-learning models, including convolutional neural networks 
(CNNs) and variants of recurrent neural networks (RNNs), and pre-trained language 
models (BERT). Their work indicated text data was more useful than numeric data in 
predicting credit ratings.  
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The second approach to credit rating forecasting involves explicitly modeling the transition 
probabilities between credit ratings, rather than attempting to explain current ratings. In 
our view, this is a more effective way of forecasting ratings changes, as it isolates features 
and relationships which correspond directly with transitions.  

Early models of rating transition relied on historical transition matrices, assuming constant 
Markovian probabilities – that is to say that they were memoryless, assuming that the 
likelihood of transitioning from one credit rating to another depends only on the current 
rating and not on the past ratings or the path taken to get there. Altman and Kao (1992) 
documented “rating drift,” where downgrades tend to cluster, challenging the memoryless 
Markov assumption. Empirical evidence shows transition probabilities are time-varying 
and cyclical (Bangia et al. 2002), worsening in downturns. Discrete-time models like 
dynamic ordered probit/logit have also gained popularity. Blume, Lim, and MacKinlay 
(1998) used ordered models to study shifting rating standards. Mizen and Tsoukas (2012) 
found that including lagged ratings and initial rating improves downgrade prediction, 
confirming the presence of rating momentum. Feng, Gourieroux, and Jasiak (2008) 
developed an ordered qualitative model capturing these transitions empirically.  

To address hidden regime shifts, researchers introduced Hidden Markov Models to identify 
the latent credit process. Jarrow, Lando, and Turnbull (1997) proposed a reduced-form 
Markov intensity model that incorporates both default and rating migration risk into the 
pricing of credit spreads. Their model allows for arbitrage-free pricing of risky bonds and 
CDS instruments, and remains widely cited as the basis for dynamic credit term structure 
models. Nickell, Perraudin, and Varotto (2000) tested the stability of historical rating 
transition matrices and found strong evidence of time variation, especially in downgrade 
rates during recessions. This challenges the use of unconditional average matrices in 
portfolio models and supports time-varying or regime-based transition modeling. Lando 
and Skødeberg (2002) showed that path and duration dependencies significantly affect 
migration probabilities. Korolkiewicz and Elliott (2008) modeled rating transitions as noisy 
signals of unobserved credit states. These models infer latent regimes such as “crisis” or 
“expansion,” aligning predicted transitions with macro cycles. Figlewski, Frydman, and 
Liang (2012) explicitly modeled how macroeconomic variables like GDP growth, industrial 
production, and interest rates affect both default probabilities and rating migrations. Their 
model links firm-level credit events to systemic risk channels, confirming that macro 
variables significantly improve predictive accuracy beyond firm fundamentals alone. 
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Finally, modern machine learning has started to emerge as a method of choice. Afonso, 
Gomes, and Rother (AGR 2011) conducted an extensive comparison of binary classifiers 
(logit, decision trees, neural nets, SVMs) in predicting upgrades and downgrades. In 
juxtaposition to our work, AGR focus on predicting the direction of rating transition 
conditional on a transition having already occurred. We believe our formulation more 
accurately represents the situation of a real-time forecaster, who must determine both the 
likelihood of a rating transition as well as direction. Our approach differs from the body of 
existing work by using machine learning techniques, coupled with a unique dataset of firm 
and bond-specific covariates to develop practical, forward-looking probability forecasts. 

 

Data 
We analyze credit rating transitions between 2001 and 2024, focusing on corporate bonds 
covered by the IUC0 IceBofA Index4. IUC0 tracks over 12,000 issues and 2000 issuers, 
focusing primarily on corporate bonds denominated in USD. Our database covers 8,792 
unique bond issuers and over 507,527 issuer-month samples. 

We aggregate issue-level ratings to obtain a single issuer-level rating.5 We focus on bucket-
level transitions, subsequently aggregating ratings to ten buckets {AAA, AA, A, …, CC, C, D}, 
where D represents default. Transitions are modeled at a monthly frequency. 

The figure below shows the empirical transition probability matrix obtained from our 
sample. A cell gives the likelihood (in percent) of a transition from a given bucket (row) to 
another bucket (column) over one month. Thus, the values in a row sum to one. These 
likelihoods are averages across issuers and time. They provide model-free estimates of 
transition probabilities for an issuer with a given rating.   

 
4 Source: ICE Data Indices, Man Group. Relevant ICE Data Index is a product of ICE Data Indices, LLC and is 
used with permission. ICE® is a registered trademark of ICE Data Indices, LLC or its affiliates. The index data 
referenced herein is the property of ICE Data Indices, LLC, its affiliates (“ICE Data”) and/or its third party 
suppliers and has been licensed for use by Man Group. ICE Data and its Third Party Suppliers accept no 
liability in connection with the use of such index data or marks.  

5 Face-value weighting balances stability with liquidity considerations in determining aggregate issuer 
ratings. 
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We highlight several observations. Across all rating buckets, the most likely outcome is no 
change; the probabilities in the diagonal of the matrix are the largest in every row. For 
example, the probability of an AA-rated issuer maintaining its rating over the next month is 
98.67%. Upgrades and downgrades to adjacent buckets (e.g. from AA to A) are less likely 
for IG rated issuers than for HY issuers. Multi-bucket transitions (e.g. from AA to BBB) are 
exceedingly rare, with frequencies being typically (much) lower than 10 basis points. The 
only exceptions are HY issuers rated CCC and below, for which multi-bucket transitions 
are in the order of a few percent. Transitions to default by firms rated CCC and above are 
very rare. 

To reduce the dimensionality of the ratings prediction problem, we focus on four primary 
transitions from any given rating bucket: No change, upgrade, downgrade, and default. 
Default is treated as an absorbing state: once an issuer enters that state we stop tracking 
it. Upgrades, downgrades, and defaults cover multi-bucket transitions along with the more 
common single-bucket transitions. Modelled probabilities for these four transitions can be 
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used to accurately approximate the full 10x10 bucket-to-bucket transition probability 
matrix. 

Following this labeling approach, we obtain 499,978 issuer-month samples of no change, 
4,583 downgrade samples, 2,867 upgrade samples, and just 99 default samples. The 
transition sample is highly unbalanced: the vast majority of the samples deliver the same 
outcome (no change). The default count is lower than in alternative issuer universes over 
the same period (e.g. Moody’s rated bonds). This is due to selection bias: the IUC0 Index 
representing our universe focuses on performant issues subject to index eligibility criteria – 
i.e. they have already cleared several hurdles in order to be included within the index. The 
selection bias reflects the institutional reality for market participants who use these 
benchmarks to obtain accurate pricing and security characteristics. As a result, we focus 
less on the default probability component of our classification system and primarily 
examine upgrades and downgrades.     

Our goal is to predict conditional transition probabilities over a future period given a vector 
of features. We construct 48 variables representing several different categories: (1) Equity-
related variables such as momentum from sources including Barra and Man; (2) bond 
variables such as yield and option-adjusted spread from ICE, (3) ratings variables such as 
the current issuer-level rating and the split-rated-ness of the issuer, (4) one-year default 
probabilities from SAS/Kamakura and (5) macro-economic variables such as interest rates 
from Bloomberg. Table 1 in the Appendix provides a complete list of these variables.  

All features except the macroeconomic variables are issuer-specific – that is to say, that 
we seek to distinguish between systemic and idiosyncratic factors. The modelled 
dependence of conditional transition probabilities on variables common to all firms 
captures the correlation of transitions. For example, low GDP growth tends to increase the 
probability of downgrade across the board, implying downgrades correlated across the 
issuer universe.    

Features are time-stamped and matched with the transition samples. The variables are 
updated at different frequencies (e.g. daily, monthly); we use the most recent values 
available at the beginning of a month. Specifically, for issuer i, we denote by 𝑋𝑖𝑡 the vector 
of feature variables evaluated at the beginning of month t.  

About 50% of the samples have missing feature values. There are some broad missingness 
patterns that we can identify. For example, private (non-listed) firms lack the complete set 
of equity-related variables (e.g. momentum). We treat missing values by including in 𝑋𝑖𝑡: a 
missingness dummy as well as a numeric variable measuring the percentage of missing 
values for a sample. A missing feature value is imputed by replacing it with the cross-
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sectional median of the observed feature values at the relevant period. With the missing 
dummy and missing fraction variables, our model can discern samples with imputed 
feature values from samples with fully populated values. This approach enables us to 
harness all 500,000+ transition samples for model construction and testing. 

 

Transition Probability Model 
The observed data consist of issuer-month transition-feature pairs(Y𝑖𝑡, X𝑖𝑡)  where the 
“label” 𝑌𝑖𝑡 represents one of the four possible transitions we track (no-change, upgrade, 
downgrade, default) observed for issuer i during month t, and 𝑋𝑖𝑡 is the associated feature 
vector. For convenience, the transitions are enumerated such that Y𝑖𝑡 ∈ {1,2,3,4}. We will 
use a subset of the observed data to estimate the conditional probabilities 𝑃𝑡(𝑌𝑖𝑡 = 𝑘) for 
transitions k=1,…,4 during month t, given all information available at the beginning of t. To 
this end, we assume that  

P𝑡(Y𝑖𝑡 = k)  =  f𝜃(k, X{it}) 

Where f𝜃is a transition function (model) to be specified, 𝜃 is a vector of parameters to be 
estimated, and k=1,…,4. Note we do not report statistics on the default class as the 
sampling is too small to conduct tests.  

𝑓𝜃 does not depend on time or issuer; it represents the transition behavior across issuers 
and time. The feature vector 𝑋𝑖𝑡creates an issuer- and time-dependent transition 
probability.    

Although our time horizon is a single month, we can generate transition probability 
estimates for any multi-month horizon by stacking single-month predictions. For example, 
the probability of no rating change over two months is the product of the conditional 
probability of no change over the next month and the conditional probability of no change 
over the second month. The first probability can be directly evaluated. To evaluate the 
second probability, we need to evolve the covariate 𝑋𝑖𝑡 forward to the beginning of the 
second month. The simplest approach would be to freeze 𝑋𝑖𝑡 at the most recent value. 
Another approach is to formulate hypothetical scenarios for selected elements of 𝑋𝑖𝑡, such 
as key macro-economic variables. We leave the exploration of long-horizon ratings 
prediction for future research.  

We consider alternative specifications of the transition function f𝜃, including a linear 
logistic regression baseline and machine learning (ML) classifiers such as a random forest 
(an ensemble learning method that combines multiple decision trees) and gradient 
boosting (another ensemble method that builds models sequentially, optimizing 
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performance by reducing errors from previous iterations). We also consider a naïve 
benchmark leveraging the in-sample transition matrix to construct out-of-sample 
forecasts solely according to ratings class.  

The ML models have the capacity to capture complex non-linearities, including 
interactions between variables, in the transition data. This, in turn, can enable more 
accurate transition forecasts. We choose to focus on random forests and gradient 
boosting because they are easier to train and do not require the normalization of the 
feature variables when compared to alternative techniques such as neural networks. 

 

Model Training 
A model f𝜃 is trained by minimizing a cross-entropy error objective (a loss function that 
measures the difference between the model’s predicted probabilities and the actual 
observed outcomes) over the parameter set 𝜃 given a set of training pairs (𝑌𝑖𝑡, 𝑋𝑖𝑡). The 
optimization can entail a regularization term to guard against overfitting the training data at 
the expense of generalizability (that is, reduced out-of-sample predictive accuracy).  

The training set is often partitioned into two subsets, the smaller of which (the validation 
set) is used to tune any hyper-parameters associated with f𝜃 or the optimization (training) 
method. A hyper-parameter can, for example, specify the complexity of an ML model or the 
weight of a regularization term.  

Unless noted otherwise, we use pairs (𝑌𝑖𝑡, 𝑋𝑖𝑡) observed up to 12/2014 (about 50% of the 
entire sample) for model training and validation, and pairs between 1/2015 and 12/2024 for 
out-of-sample testing of model predictive performance.  

One issue we face is the severe imbalance of the transition data set: the vast majority of 
the samples represents no-change transitions. This renders model training challenging, 
especially for the minority outcomes (upgrades, downgrades, defaults). A standard 
approach to mitigate this issue is under-sampling the majority class and/or over-sampling 
the minority classes for training. This approach is equivalent to re-weighting the samples in 
the objective function. It introduces a bias into predicted probabilities that we will need to 
remove later. 
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Model Evaluation – Out-of-sample predictive performance 
A fitted model 𝑓𝜃, where  𝜃 minimize the training objective, delivers predicted one-month 
ahead transition probabilities for an issuer i with feature vector 𝑋𝑖𝑡 via (*).  We measure the 
accuracy of these predicted probabilities on the test set using two approaches.  

The first is based on the standard tool of Receiver Operator Characteristic (ROC) curves, 
and more specifically, the Area Under the Curve (AUC). The AUC measures a model’s 
ability to correctly rank firms according to the predicted likelihood of a transition. For 
example, for downgrade, the AUC is the probability that a model forecasts a higher 
likelihood of downgrade for a randomly chosen downgrade sample than a randomly 
chosen upgrade/unchanged/default sample. An AUC of 1 represents a crystal ball model 
and an AUC of ½ a useless coin flip model. Note that the under/over-sampling of the 
training samples does not affect the AUC. 

 

Class 
Transition 
Matrix AUC 

Logistic 
Regression AUC 

 
Random Forest AUC Gradient Boosting AUC 

Unchanged 0.63 0.70  0.72 0.81 
Upgrade 0.56 0.65  0.70 0.88 
Downgrade 0.54 0.77  0.80 0.90 

Exhibit 1: Model AUCs 

 

We document substantial AUCs for our feature set. The non-linear versions of the model 
generate exceptional results over our sample, with AUCs in the high-80% over the OOS 
period. In addition to examining ROC AUCs, we also examine the precision-recall tradeoff 
of our model. Below, we plot the precision-recall curve and ROC curve for the gradient 
boosting model, focusing on the downgrade class for illustration.  
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Exhibit 2: Precision-Recall and ROC Curve for Gradient Boosting Model 

 

As a reminder, our panel is significantly imbalanced with 0.6% of the full sample 
representing upgrades and 0.9% of the sample representing downgrades. In the out-of-
sample period, the proportions are even smaller at 0.7% and 0.5% for downgrades and 
upgrades, respectively. The baseline PR-AUC associated with a random classifier 
corresponds to the positive-class proportion of the dataset. The OOS downgrade PR-AUC 
of 12% thus represents a 20x improvement over random classification, which is 
substantial in light of the class imbalance. Besides PR-AUC, we also seek high precision at 
a reasonable level of recall for risk management applications. In this respect, our model 
achieves ~20% precision at 20% recall, representing a 28-fold improvement over random 
classification. For upgrades, we achieve a precision of ~5% at 20% re-call, which is 10X 
improvement over random classifier. As an additional benchmark, the PR-AUC for a naïve 
transition matrix generates 0.6% PR-AUC for upgrades and 0.8% PR-AUC for downgrades, 
which are only slightly above the baseline proportions of downgrades and upgrades.  

Our downgrade prediction results are particularly strong, while our upgrade 
performance is also robust. This pattern reflects real-world behavior: downgrades tend to 
be triggered by more abrupt and observable financial deterioration, resulting in clearer 
model signals. Upgrades, on the other hand, occur more slowly and are subject to greater 
conservatism by rating agencies. In our sample, we observe twice as many downgrades as 
upgrades, leading to a higher signal-to-noise ratio for downgrade detection. As such, the 
relative difference in performance is consistent with prior findings in the literature.  

Our second approach to measuring out-of-sample predictive performance entails 
comparing forecasted transition probabilities with realized transition rates. The predicted 
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probabilities are biased due to the under/over-sampling of the samples for model training. 
We need to remove this bias by calibrating the predicted probabilities to actual transition 
rates. To perform this calibration, we take pre-2015 as the in-sample period and construct 
10 equally distributed bins mapping predicted probabilities to the average transition rate 
within each bin. The bin thresholds and values are then used out-of-sample to compute 
aggregate forecasted transition rates over time, plotted below for downgrades. 

 

 

Exhibit 3: Forecasted vs. Actual Aggregate Counts for Downgrades 

 

Note this procedure can be generalized by refining the calibration function 𝑔(𝑓, 𝑋𝑖𝑡) to 
better match physical transition rates. Our current approach can be viewed as having a 
naïve, non-parametric calibration which could easily be extended by incorporating macro 
variables or other covariates. It is encouraging that we see close aggregate predicted 
counts with a simple procedure.  
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Robustness Analysis 
 

We perform several robustness checks: 

1. To test for potential leakage from the feature variables causing look-ahead bias, we 
construct models with lagged feature values (3- and 6-month lags). The out-of-
sample AUCs drop a few percent for each transition but not excessively. There is no 
evidence of leakage.    

2. We investigate whether a global model trained on the full-sample is more optimal 
than models trained within separate sub-universes. As mentioned above, about half 
of the sample has missing feature values. We partition the data according to 
missingness patterns and train alternative models on these partitions. Zooming into 
appropriate partitions of the test set, we compare sub-model performance with full 
model performance over the training sample. We find the full model performs at 
least as well as the alternative sub-models and, in some cases, significantly better. 
This implies the ability of ML models to learn patterns in the transition data even if 
some features are missing.  

3. Finally, we have also constructed and tested models on different train/test 
partitions of the data set. The main empirical results are qualitatively similar to 
those specified here. 

 

The AUC results as a function of monthly lag are tabulated in the appendix. We are happy 
to provide the other results upon request.  

 

 

 

 

 

 

 

 

Predicted Downgrade Probability  

vs. OAS and Kamakura 1Yr Default Probability  
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Hidden Insights 
 

First – we highlight feature importances derived from our XGBoost model. Feature 
importance in XGBoost quantifies the relative contribution of each predictor to the model’s 
predictive performance. This measures the improvement in the model’s loss function from 
splits involving a given feature, aggregated across all trees.  

 

Feature Importance 
OAS 0.19 
Yield-to-Maturity 0.17 
1-year KDP 0.08 
9-month Equity Momentum 0.07 
Barra Momentum 0.07 
Issuer Rating 0.06 
12 Month Equity Momentum 0.06 
6 Month Equity Momentum 0.04 
Barra Spec Risk 0.03 
Issue Market Value 0.03 
Issuer Market Value (Bond) 0.02 
3 Month Equity Momentum 0.02 
Split-rating  0.02 
Barra Volatility 0.02 
Barra Residual Volatility 0.02 

Exhibit 4: Feature Importances 

 

The top two features are bond-market features – the option-adjusted spread and yield-to-
maturity. The dominance of these features is a well-known result consistent with prior 
understanding:  the bond market tends to price ratings changes well before they occur, 
implying market-based indicators of credit risk should be highly useful. Another notable 
cluster of features is equity market-related, as we see the full term-structure of equity 
momentum across horizons rank high in importance. Lastly, in terms of fundamental 
indicators of credit risk, we see the SAS Kamakura default probability and current issuer-
level rating as critical covariates.  

Notably, these features drive rating transitions in a non-linear way; the empirical AUC 
results indicate non-linearity adds substantial value on top of a logistic-linear specification 
with the same underlying data. To further explore the structure of the non-linearity, we 
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examine one and two-dimensional partial dependence plots as a useful way of visualizing 
and interpreting the models.  

One-dimensional partial dependence plots (1D PDP) show the marginal effect of a single 
feature on our predicted transition probability. Two-dimensional partial dependence plots 
(2D PDP) visualize the marginal effect of two features on a model’s predicted outcome, 
averaging over the distribution of all other features. The resulting surface highlights 
interactions and non-linearities by plotting predicted values across a grid of joint values for 
the selected feature pair. These tools aid in interpreting models such as gradient-boosted 
trees by illustrating how combinations of features influence model output. 

Below, we plot 1D PDPs for Barra momentum and the SAS/Kamakura default probability 
(KDP). The patterns are consistent with intuition – downgrades tend to be more likely for 
issuers with higher default probability and with negative equity momentum. Additionally, 
univariate analysis alone indicates some substantial non-linearity in the relationships; 
downgrade probability is generally monotonic with both covariates, but the kinks and 
plateaus in the curve are learned by the model. 

 

 

Exhibit  5: Momentum 1D PDP: 
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Exhibit  6: KDP 1D PDP 

To deepen the analysis, we plot 2D PDPs of our downgrade probability model jointly 
against Kamakura default probability and momentum indicators. Consistent with the 
univariate interactions, the downgrade probability tends to increase with increasing KDP 
and with negative momentum. There is a substantial non-linearity detected in the 
interaction of the two covariates - the probability surface is steepest at the smallest and 
largest values of KDP and momentum, while flattening out in the middle region of the 
distribution.  
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 Exhibit  7: Momentum-KDP 2D PDP 

 
We also examine the 2D PDP of KDP against the OAS of the issuer. Another intuitive pattern 
emerges – on a univariate basis, the bonds with widest spreads as priced by credit markets 
demonstrate the largest downgrade risk. However, the KDP adds orthogonal information – 
for any fixed OAS, a higher KDP drives a larger downgrade probability, indicating the value-
add of KDPs above and beyond what is visible in market spreads.    
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 Exhibit 8: OAS-KDP 2D PDP 

 
Beyond these graphics, we also include OAS-Momentum and Rating-KDP 2D PDP plots in 
the appendix. The interpretation is qualitatively similar – high downgrade probability firms 
have wide spreads and negative equity momentum. High downgrade probability firms also 
tend to exhibit the highest default probability within their rating class.  
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Conclusion 
This study presents a practical framework for forecasting credit rating transitions using 
machine learning. By systematically identifying firms with elevated probabilities of 
downgrade or upgrade, the model supports more proactive portfolio management and 
better capital allocation. These insights are especially critical for financial institution 
investors like insurers, who are highly sensitive to credit ratings of securities on balance 
sheet. The ability to forecast rating transitions consistently and accurately will enhance 
insurer risk management and bottom-up credit selection.  The aggregate impact of such 
improvements should support a more stable financial intermediation process. More 
generally, we expect the framework to be useful to any institution looking to enhance 
monitoring tools, manage tail risks, and refine bottom-up credit selection. 

We also highlight novel non-linear interactions between bond and equity-market features 
in forecasting ratings transition. One area of future work involves exploring and enhancing 
long-horizon forecasts, possibly by integrating macroeconomic forecasts into the 
framework. Another area could involve integrating additional data sources, including the 
vast array of alternative datasets used in systematic investing processes. Lastly, further 
work should certainly focus on integrating such models into portfolio management 
systems or capital allocation frameworks.   

The credit markets have historically been slower than equity markets to adopt technology. 
It is incumbent on us as market participants to use the full range of tools available to us to 
make the right decisions for our clients. We believe that the future of credit is only going in 
one direction: increasing sophistication, technological innovation, and systematization. 
Work such as this study will help the most evolved and forward-looking credit managers 
and allocators take proactive and informed decisions.  
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Appendix 

  

Feature Category Description 
Missing proportion Missingness Missingness indicator defined as the proportion of features that are missing pre-imputation in the 

sample. 
BASPCAAA Index Macro US Corporate AAA 10 Yr Spread from Bloomberg. 
VIX Index Macro Chicago Board Options Exchange Volatility Index from Bloomberg. 
SPX Index Macro S&P 500 Index from Bloomberg 
INJCJC Index Macro US Initial Jobless Claims Seasonally-adjusted from Bloomberg 
CPI Index Macro US CPI Urban Consumers YoY NSA 
CL1 Comdty Macro Generic 1st Crude Oil, WTI (NYM) 
CO1 Comdty Macro Generic 1st Crude Oil, Brent (ICE) 
USGG10YR Index Macro US Generic Govt 10 Yr from Bloomberg 
USYC5Y30 Index Macro 5s30s spread from Bloomberg 
USYC2Y10 Index Macro 2s10s spread from Bloomberg 
USURTOT Index Macro US Unemployment Rate, Seasonally-adjusted from Bloomberg 
USYC3M10 Index Macro 3m10y spread from Bloomberg 
1-year KDP Fundamental Credit Risk SAS Kamakura 1-year forward default probability of the issuer. 
Issuer Rating Fundamental Credit Risk Issuer-aggregated credit rating. 
Split-rating Fundamental Credit Risk Dummy variable defined as 1 if there is disagreement between S&P/Moody's/Fitch on credit rating. 
Log Change KDP Fundamental Credit Risk Max{0, Log(KDP_{t}/KDP_{t-12}) 
9-month Equity Momentum Equity Market Indicator Point-to-point 9-month price return. 
12 Month Equity 
Momentum 

Equity Market Indicator Point-to-point 12-month equity price return. 

6 Month Equity Momentum Equity Market Indicator Point-to-point 6-month equity price return. 
3 Month Equity Momentum Equity Market Indicator Point-to-point 3-month equity price return 
1 Month Equity Momentum Equity Market Indicator Point-to-point 1-month equity price return. 
Barra Earnings Variability Equity Market Indicator Proprietary MSCI Barra factor. See MSCI documentation for definition.6 
OAS Bond Market Indicator Option-adjusted spread of the representative bond from ICEBofA. 
Yield-to-Maturity Bond Market Indicator Yield-to-maturity of the representative bond from ICEBofA. 
Issue Market Value Bond Market Indicator Issue market value of the representative bond from ICEBofA. 
Issuer Market Value (Bond) Bond Market Indicator Summed market-value for all bonds within the issuer. 
Spread Duration Bond Market Indicator Spread duration of the representative bond from ICEBofA. 
Barra Momentum Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Spec Risk Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Volatility Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Residual Volatility Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Pbeta Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Gbeta Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Size Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Book-to-price Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Liquidity Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Long-term reversal Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra beta Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra earnings yield Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Dividend Yield Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Profitability Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Growth Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra leverage Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Investment Quality Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Mid-cap Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 
Barra Earnings Quality Barra Risk Factor Proprietary MSCI Barra factor. See MSCI documentation for definition. 

Exhibit  9: Model Variables 
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Lag Class Logistic Regression AUC Random Forest AUC Gradient Boosting AUC 

1 Unchanged 0.685 0.722 0.789 

1 Upgrade 0.630 0.698 0.806 

1 Downgrade 0.760 0.789 0.838 

3 Unchanged 0.679 0.714 0.758 

3 Upgrade 0.624 0.694 0.790 

3 Downgrade 0.756 0.780 0.796 

6 Unchanged 0.668 0.707 0.739 

6 Upgrade 0.633 0.701 0.764 

6 Downgrade 0.689 0.764 0.792 
Exhibit  10: AUCs vs. Lag 

 

Threshold 
Upgrade 
Precision 

Upgrade 
Recall 

Upgrade 
TP 

Upgrade 
FP 

Upgrade 
FN 

Downgrade 
Precision 

Downgrade 
Recall 

Downgrade 
TP 

Downgrade 
FP 

Downgrade 
FN 

0.1 0.02 0.67 725 30756 360 0.04 0.72 1105 28087 432 

0.15 0.03 0.5 541 16120 544 0.06 0.63 963 15492 574 

0.2 0.04 0.37 399 9557 686 0.08 0.54 837 10149 700 
Exhibit  11: Precision-Recall Statistics 

 

 
6 Barra, LLC's analytics and data (www.msci.com) were used in the preparation of this report. Copyright 2025 
Barra, LLC. All Rights Reserved 

https://protect.checkpoint.com/v2/___https://gbr01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.msci.com%2F&data=05%7C02%7CVinayak.Kumar%40man.com%7C5fa7f363cb0a4441730008ddb000a92e%7Cf771e26b93bc4bbe8f6b7cd560ce9350%7C0%7C0%7C638860239096428251%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=QwodGL5VfWRyhShhZzR2J7mCyqnkBZeWtu%2FIZKhTMcI%3D&reserved=0___.YzJ1OnNhc2luc3RpdHV0ZTpjOm86MDNiYjJiODhhMmU0YmNhYzZjOGUxM2JhYWJkZDFiZjk6Njo3MTBjOjFkZmIxOWEwMjUyMDViYTk2NmQ1ZTIyYjVmMTE1MWI4YjVlN2U5ZTU5NGQxNDllZDY1ZTZiM2I0NzA2NWZmMjY6cDpUOk4
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 Exhibit 12: XGB downgrade probability and ratings trajectory for mid-sized  issuer in financial services 
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Exhibit 13: OAS-Momentum 2D PDP 
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Exhibit 14: KDP-Rating 2D PDP 
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